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Abstract

It is shown that any type of material damage that causes sti}ness degradation in general requires
description by an eighth order damage tensor but that the principle of strain equivalence permits a reduction
to a tensor of order four[ The actual number of independent damage parameters in such a tensor is related
to the material and damage symmetry[ For the isotropic case\ there must be two independent damage
parameters which can be expressed in terms of damage parameter with physical meaning[ Þ 0887 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

In a broad sense\ the term damage refers to degradation or break!up of materials[ It can originate
from diverse phenomena such as oxidation\ carbonation\ corrosion\ mechanical cleavage\ or any
type or disintegration or weakening from aging or mechanical processes[ In the _eld of applied
mechanics\ the pioneering fatigue damage concept proposed by Palmgren "0813#\ now well!known
as the PalmgrenÐMiner rule\ and the creep damage concept of Robinson "0841# have pointed the
way to a phenomenological representation of such damage[

It is generally accepted that damage in mechanics can be characterized on the three M!scales ]
the micro\ the meso and the macro[ Atomic voids and dislocations are viewed in the microscale\
while visible or near!visible discrete damage manifestations\ such as loss of section due to corrosion
or the isolated cracks treated in fracture mechanics\ are seen on the macroscale[ The mesoscale is
the building block of continuum mechanics in which discrete phenomena can be smeared into
mean e}ects[ In the description of damage\ the mesoscale serves the same role in that the e}ects
of microvoids\ microcracks and other distributed deteriorations are averaged therein[ What that
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scale is\ speci_cally depends on inherent dimensions in the material "e[g[ reinforcement in a
composite and aggregate in concrete# and of the damage itself[

In continuum damage mechanics\ the transition from the micro to the meso!scale su}ers from
the same hurdles that have hindered the step from material science approaches to those of
continuum mechanics[ On the other hand\ the mesoscale formulation will have direct application
to the macroscale damage description much as is seen in continuum mechanics and its application
to skeletal structures[

Many models have been proposed in recent years to formulate the damage e}ects on the
mesoscale in what has come to be known today as Damage Mechanics[ There are two comp!
lementary approaches within this body of work ] one focuses on the mechanics of the actual
damage manifestations\ such as microcracking\ to determine their combined net e}ect at the
mesoscale[ This is the micromechanics approach[ The other is phenomenological in that it treats
an element with certain properties as if it were in a homogeneous medium without regard to how
those properties come about from the damage[ It is this latter approach that has been termed
continuum damage mechanics and it is the one we follow here\ though we shall refer for guidance
to the micromechanical concepts as well[

The aim of micromechanical damage theories is to develop models that establish a functional
dependence between the random and heterogeneous microstructures and the macro!response of
materials[ Information concerning distribution\ concentration\ shapes and orientations of voids
and microcracks is needed in these models[ The concept of a representative volume element "RVE#
Hill "0852#\ Hashin "0872# at the mesoscale is most important in this approach[ Within the RVE
the contributions of discrete entities of damage are considered and averages over the RVE give the
_eld of damage variables regarded as internal variables[

The representative volume element "RVE# is signi_cant in the phenomenological approach as
well and may be thought of as the typical element of the continuum[ Within the RVE\ the
discrete entities of damage do not appear explicitly\ but their e}ects are represented by means of
macroscopic internal variables[ One advantage of this simpli_cation of the discrete process of
damage is that the derivations can be based on the unifying theory of the thermodynamics of
irreversible processes with internal variables\ and not solely on physical considerations[

Numerous continuum damage models have emerged in the past twenty years\ too many to
permit reference to all of them here[ The choice of the damage variables is perhaps the most
challenging step in the development of these damage models\ and many have appeared in the
existing literature[ In this study\ we shall refer to micromechanical arguments to establish the most
general form of damage description that uni_es all the previous phenomenological models[ This
formulation establishes\ as well\ the minimum number of damage parameters required depending
on the degree of symmetry of the material properties and of the damage[

1[ Description of damage

Within the framework of damage mechanics\ only that which causes degradation in the sti}ness
of a material is considered[ Thus\ cracking or corrosion in an element can be represented in this
approach\ but the e}ects of carbonation in concrete or hydrogen embrittlement in metals may not
be included[ Nor are plastic deformations unaccompanied by sti}ness degradation considered to
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be damage in this context\ although the occurrence of damage can induce additional plastic
deformations[

If a material is initially isotropic\ and if the e}ects of damage are re~ected in a reduction of the
various sti}nesses\ they may be designated by reduction factors applied to each sti}ness as well as
other material properties[ In the case where the damaged material remains isotropic these might
include

E	 � REE\ G	 � RGG\ K	 � RKK\ n½ � Rnn "1[0#

In these\ E\ G\ K\ and n denote\ respectively\ the Young|s modulus\ the shear modulus\ the bulk
modulus\ and the Poisson|s ratio of the virgin material[ If the material becomes anisotropic because
of the damage\ reduction factors for the various material directions would have to be identi_ed[
The scalar factors that apply to sti}nesses must be less than one\ i[e[ RE\ RG\ RK ¾ 0 but the e}ect
on other material properties "e[g[ Rn# cannot be so categorized\ a priori[ More commonly\ these
scalar factors of damage might be described by scalar damage parameters Di that measure the
degree of damage e}ect in the form ]

0−Di � Ri "1[1#

where the subscript i denotes any of the material parameters above[ It is these scalar damage
measures that are of most interest to us because they are the quantities most readily identi_ed in
experiments[ But\ it is clear that these scalar damage parameters cannot all be independent\ just as
the material parameters that they modify are not independent of one another but are derived from
the elements of the tensor of the elastic constants whose number is limited by the material symmetry[
Moreover\ these damage parameters may not form the complete set of damage variables because
the damage itself may a}ect the material symmetries and thus cause the number of independent
elastic constants to change[ Thus\ a fundamental set of damage variables should be sought from
which the scalars above are derived and which will account for the symmetry or lack of symmetry
in the damage\ irrespective of the initial material symmetries[

2[ Most general damage tensor

At any given state of damage\ the elastic portion of the material response will be characterized
by a fourth!order tensor E	 of the damaged elastic moduli just as the fourth order tensor E describes
the elastic response of the virgin material[ In general\ one may expect that the damage moduli
depend on both the undamaged values and on some measure of the damage level\ i[e[ E	 "E\ damage
level#[ Micromechanical theories of composite materials will show the relation of E	 to E as a linear
one if the damaged material is considered as a limiting case of such a composite "Cauvin\ 0886#[

If the relation is shown to be linear\ then for two fourth order tensors the linear expression is
most generally

E	 � R7 ] ] E "2[0#

The level of damage is contained in the eighth order tensor R7 and the quadruple inner product is
indicated by the operation in eqn "2[0#[ R7 contains the level of damage in the sense that it de_nes
what fraction of the sti}nesses remains in the material[
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When there is no damage\ R7 must reduce to the identity tensor de_ned by the relation

I7 ] ] E � E "2[1#

Using this unit tensor\ it is also possible to rewrite eqn "2[0# so that the actual level of damage is
isolated in an eighth!order damage tensor D7 in the form ]

R7 � I7−D7 "2[2#

so that

E	 � "I7−D7# ] ] E "2[3#

This eighth!order tensor description of damage with its "2#7 elements\ while comprehensive in its
generality\ would be extremely cumbersome to work with and quite impossible to manage in
physical applications[ Universal symmetries can reduce the tensor rank and improve tractability[

3[ Effective stress and the fourth!order damage tensor

Introduced by Rabotnov "0857# for uniaxial load and extended to the general case by Lemaitre
"0860# and Chaboche "0866#\ the e}ective stress s½ is the stress tensor to be applied to a virgin
representative volume element in order to obtain the same elastic strain tensor\ oe\ produced by
applying the actual stress tensor\ s\ to the damaged volume element[ Because the same elastic
strain is considered in both damaged and undamaged materials\ that strain is considered to be the
equivalent strain[

By this de_nition often called the principle of strain equivalence\ the actual stress and e}ective
stress satisfy the equations ]

sij � E	ijklo
e
kl "3[0#

s½ ij � Eijklo
e
kl "3[1#

Using the principle and making use of the symmetry properties inherent in the moduli which make
the eighth!order tensor R7 in eqn "2[0# symmetric in successive pairs of its eight indices\ the most
general damage description will reduce to a fourth!order damage tensor[

Equation "3[0# with eqn "2[0# and eqn "3[1# give

sij � RijklmnpqEmnpqE
−0
klrss½ rs � Rijrss½ rs "3[2#

where the newly introduced fourth!order tensor R will also possess symmetry in successive pairs
of indices[

Starting with eqn "2[2#\ in which the unit tensor I7 for the set of tensors with the symmetry
possessed by R7 is "Cauvin\ 0886#

Iijklmnpq � 0
3
"dimdjndkpdlq¦dimdjndkqdlp¦dindjmdkpdlq¦dindjmdkqdlp# "3[3#

it can be shown that R in eqn "3[2# can be written in the form
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Rijrs � Iijrs−Dijrs "3[4#

with

Dijrs � DijklmnpqEmnpqE
−0
klrs "3[5#

and Iijrs the unit tensor for the set of tensors with the symmetry of R is given by

Iijrs �
0
1
"dirdjs¦disdjr# "3[6#

Using eqn "3[3# the damaged moduli\ eqn "2[3#\ expressed in terms of the eighth!order damage
tensor are given by

E	ijkl � Eijkl−DijklmnpqEmnpq "3[7#

Postmultiplying eqn "3[5# by E and using eqns "3[7# and "3[4# one can obtain

E	ijkl � Eijkl−DijrsErskl � "Iijrs−Dijrs#Erskl � RijrsErskl "3[8#

The most general description of damage that results in sti}ness degradation\ therefore\ need not
be embodied in an eighth!order tensor as in "2[0# or "2[3#\ but may instead by contained in the
fourth!order tensors R and D of "3[8#\ as long as the principle of strain equivalence is imposed[

4[ Anisotropy of damage

In the virgin state\ even in the most general case of anisotropy\ there are only 10 independent
elements of the fourth!order elastic modulus tensor E as a result of the general symmetry require!
ments

Eijkl � Ejikl � Eijlk � Eklij "4[0#

where the _rst three result from the symmetry of the stress and strain tensors and the last from the
existence of a strain energy function[ With increasing symmetry in elastic properties\ the number
of sti}ness elements decreases until only two remain "the Lame� constants\ l and m# for the isotropic
case[ We assume that the material is initially isotropic[

In all likelihood\ damage that is caused by an applied stress history will induce anisotropy\ but
symmetry properties of both the stress history and macroscopic structure of the damaged material
can limit the number of independent elements of E	 and of the damage tensor D[ The symmetry of
E in eqn "4[0# applied to E	 as well and dictates a maximum of 10 independent elements[ From eqn
"3[8#\ symmetries in the elements of E	 imply certain constraint equations on the elements of D[
Starting with the isotropic E and the general E	\ _fteen constraint equations on the elements of D

are found from eqn "3[8# to describe general anisotropic damage from an initial isotropic state ]

"D0011−D1100#"0−n#¦"D0000−D1111#n¦"D0022−D1122#n � 9 "4[1#

"D0022−D2200#"0−n#¦"D0000−D2222#n¦"D0011−D2211#n � 9 "4[2#

"D1122−D2211#"0−n#¦"D1111−D2222#n¦"D1100−D2200#n � 9 "4[3#
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D0001 � D0100

0−n

0−1n
¦"D0111¦D0122#

n

0−1n
"4[4#

D0002 � D0200

0−n

0−1n
¦"D0211¦D0222#

n

0−1n
"4[5#

D0012 � D1200

0−n

0−1n
¦"D1211¦D1222#

n

0−1n
"4[6#

D1101 � D0111

0−n

0−1n
¦"D0100¦D0122#

n

0−1n
"4[7#

D1102 � D0211

0−n

0−1n
¦"D0200¦D0222#

n

0−1n
"4[8#

D1112 � D1211

0−n

0−1n
¦"D1200¦D1222#

n

0−1n
"4[09#

D2201 � D0122

0−n

0−1n
¦"D0100¦D0111#

n

0−1n
"4[00#

D2202 � D0222

0−n

0−1n
¦"D0200¦D0211#

n

0−1n
"4[01#

D2212 � D1222

0−n

0−1n
¦"D1200¦D1211#

n

0−1n
"4[02#

D0201 � D0102 "4[03#

D1201 � D0112 "4[04#

D1202 � D0212 "4[05#

We note that\ in general\ Dijkl � Dklij so that the fourth order damage tensor D with 10 independent
components does not possess the full symmetry of the elastic modulus tensors E and E	 but it still
has the requisite symmetry to place it in the same set of tensors[ Additional symmetries in the
damaged material will further reduce the number of independent elements of D[

4[0[ Orthotropic dama`e

If the damaged material is orthotropic at the point in question\ then the elasticity tensor will
have nine independent elements[ The damage that causes this state\ starting from the isotropic
undamaged material is said to be orthotropic damage and the matrix form of the tensor D\ from
eqn "3[8# and the constraint equations\ can be shown to have the form ]
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D �

K

H

H

H

H

H

H

H

k

D0000 D0011 D0022 9 9 9

D1100 D1111 D1122 9 9 9

D2200 D2211 D2222 9 9 9

9 9 9 1D1212 9 9

9 9 9 9 1D0202 9

9 9 9 9 9 1D0101

L

G

G

G

G

G

G

G

l

"4[06#

Although D is still not symmetric in this case\ the twelve elements appearing in eqn "4[06# are
reduced to nine independent elements\ just as found for an orthotropic E or E	\ by the three
constraint equations "4[1#\ "4[2#\ and "4[3#[ From these\ the elements below the main diagonal of
the matrix D are given by ]

D1100 � D0011¦"D0000−D1111#
n

0−n
¦"D0022−D1122#

n

0−n
"4[07#

D2200 � D0022

0−n¦n1

0−n
¦"D0011−D2222#n¦"D0000−nD1111−D1122#

n

0−n
"4[08#

D2211 � D1122¦"D1111−D2222#n¦"D0011−D0022#n "4[19#

4[1[ Tetra`onal dama`e

If the orthotropic damage is such that the properties in two directions "say X1 and X2# are the
same but di}er from the properties in the direction X0\ then the damage is said to be tetragonal[
For such symmetry in the material properties\ the tensor of elastic moduli has six independent
elements[

Using eqn "3[8# the elements of the damage tensor are found to be further limited by ]

D0011 � D0022 "4[10#

D1122 � D2211 "4[11#

D1111 � D2222 "4[12#

D0101 � D0202 "4[13#

In matrix form\ then\ the tensor D for tetragonal damage is

D �

K

H

H

H

H

H

H

H

k

D0000 D0011 D0011 9 9 9

D1100 D1111 D1122 9 9 9

D1100 D1122 D1111 9 9 9

9 9 9 1D1212 9 9

9 9 9 9 1D0101 9

9 9 9 9 9 1D0101

L

G

G

G

G

G

G

G

l

"4[14#
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In this form\ D1100 is not independent but is given by

D1100 � D2200 � D0011

0
0−n

¦"D0000−D1111−D1122#
n

0−n
"4[15#

There are six damage parameters in this case and D remains unsymmetric[

4[2[ Hexa`onal dama`e

The special case in which the elastic properties are the same in all directions in the plane X1X2

"isotropic in the plane# is of special interest in applications with axisymmetric geometry\ loading
and consequent damage[ Such symmetry results from hexagonal damage\ and both E	 and D have
only _ve independent elements\ which leads to the further reduction of elements of D in eqn "4[14#
by the relation

D1212 � 0
1
"D1111−D1122# "4[16#

The dependence of D1100 on other elements\ eqn "4[15#\ still applies here[ The _ve remaining
independent elements of D may be denoted simply by the scalars D0\ D1\ D2\ D3\ D4[ In the notation
of the "5×5# matrix\

D �

K

H

H

H

H

H

H

H

k

D0 D1 D1 9 9 9

D?1 D2 D3 9 9 9

D?1 D3 D2 9 9 9

9 9 9 "D2−D3# 9 9

9 9 9 9 D4 9

9 9 9 9 9 D4

L

G

G

G

G

G

G

G

l

"4[17#

in which eqn "4[15# has given

D?1 �
0

0−n
ðD1¦n"D0−D2#−nD3Ł "4[18#

Starting from an isotropic undamaged material the hexagonal damaged elastic moduli can be
found using eqns "3[8# and "4[17# ]

E	0000 � "0−D0#"l¦1m#−1D1l "4[29#

E	1111 � "0−D2#"l¦1m#−"D?1¦D3#l "4[20#

E	0011 � "0−D0#l−1D1"l¦m# "4[21#

E	1122 � "0−D2−D?1#l−D3"l¦1m# "4[22#

E	1212 � "0−D2¦D3#m "4[23#

E	0101 � "0−D4#m "4[24#
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in which l and m are the Lame� constants of the material in its virgin state[ Using the constraint
equation given by "4[18#\ D?1 is eliminated from eqns "4[20# and "4[22# to give

E	1111 � "0−D2#"l¦1m#−
l

0−n
ðD1¦n"D0−D2#¦"0−1n#D3Ł "4[25#

E	1122 � "0−D2#l−
l

0−n $D1¦n"D0−D2#¦
0−1n

n
D3% "4[26#

More commonly these material constants are encountered in the "5×5# matrix form for the
compliancies

E	−0 �

K

H

H

H

H

H

H

H

H

H

H

H

H

H

H

k

0
E0

−
n01

E0

−
n01

E0

9 9 9

−
n01

E0

0
E1

−
n12

E1

9 9 9

−
n01

E0

−
n12

E1

0
E1

9 9 9

9 9 9
0

1G12

9 9

9 9 9 9
0

1G01

9

9 9 9 9 9
0

1G01

L

G

G

G

G

G

G

G

G

G

G

G

G

G

G

l

"4[27#

where the shear compliance in the plane of isotropy X1X2 is

0
1G12

�
0¦n12

E1

"4[28#

Using eqns "4[17#\ "4[27#\ "4[28#\ and "3[8# the damaged moduli in terms of the damage variables
are

E0 � E
"0−D0#"0−D2−D3#−1D1D?1

0−D2−D3−1nD?1
"4[39#

n01 �
n"0−D2−D3#−"0−n#D?1

0−D2−D3−1nD?1
"4[30#

E1 � E
"0−D2¦D3#ð"0−D0#"0−D2−D3#−1D1D?1Ł

"0−D0#"0−D2−nD3#−nD1"0−D2¦D3#−"0¦n#D1D?1
"4[31#
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n12 �
"0−D0#"n−nD2−D3#¦nD1"0−D2¦D3#−"0¦n#D1D?1
"0−D0#"0−D2−nD3#−nD1"0−D2¦D3#−"0¦n#D1D?1

"4[32#

G12 �
E

1"0¦n#
"0−D2¦D3# "4[33#

G01 �
E

1"0¦n#
"0−D4# "4[34#

Equation "4[18# must also be satis_ed and could be used to eliminate D?1 in these results for
hexagonally damaged material[

Finally\ the scalar measures of damage of eqn "1[1# might be de_ned in terms of these material
constants so that the damage parameters will have physical meaning\ i[e[

E0 � E"0−DE0
# "4[35#

E1 � E"0−DE1
# "4[36#

n01 � n"0−Dn01
# "4[37#

n12 � n"0−Dn12
# "4[38#

G01 � G"0−DG01
# "4[49#

one _nds the following ]

DE0
�

D0"0−D2−D3#¦1D?1"D1−n#
0−D2−D3−1nD?1

"4[40#

DE1
�

a0¦a1

b
"4[41#

with

a0"0−D0#"0−D2−nD3#−"0−D2¦D3#ðnD1¦"0−D0#"0−D2−D3#Ł "4[42#

a1 �
D1

0−n
ð1"0−D2¦D3#−"0¦n#Łð"D1¦nD0#−n"D2¦D3#Ł "4[43#

b � "0−D0#"0−D2−nD3#−nD1"0−D2¦D3#−
0¦n

0−n
D1ð"D1¦nD0#−n"D2¦D3#Ł "4[44#

Dn01
�

"0¦n#"0−1n#
n

D?1
0−D2−D3−1nD?1

"4[45#
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Dn12
�

0¦n

b
ðD3ð"0−n#"0−D0#−1nD1Ł¦D1"D1¦nD0−n#Ł "4[46#

DG12
� D2−D3 "4[47#

DG01
� D4 "4[48#

Again in these\ eqn "4[18# can be used to eliminate D?1[ It is in this form that the damage parameters
may be evaluated more easily from experiments[

Two more limited forms of the general hexagonal damage theory may be considered[

4[2[0[ Planar transverse isotropy "PTI#
Hexagonal damage corresponding to microcracks randomly distributed in planes parallel to the

plane of isotropy X1X2 might be the type of damage expected from uniaxial tension in concrete[
According to Hoenig "0868#\ the only moduli a}ected in this case are E0 and G01[ Therefore\ from
eqns "4[41#\ "4[46#\ and "4[47# we may conclude that the only non vanishing elements of D in eqn
"4[17# are D0\ D?1 and D4\ and that\ moreover\ from eqn "4[18#

D?1 �
n

0−n
D0 "4[59#

Damage for this case is then reduced to two independent parameters\ D0 and D4\ and eqn "4[27#
reduces to

E	−0 �
0
E

K

H

H

H

H

H

H

H

H

H

k

"0−n#−1n1D0

"0−n#"0−D0#
−n −n 9 9 9

−n 0 −n 9 9 9

−n −n 0 9 9 9

9 9 9 "0¦n# 9 9

9 9 9 9
0¦n

0−D4

9

9 9 9 9 9
0¦n

0−D4

L

G

G

G

G

G

G

G

G

G

l

"4[50#

4[2[1[ Cylindrical transverse isotropy "CTI#
Hexagonal symmetry with cracks randomly distributed in the material but with all the normals to

the crack planes orientated in planes parallel to X1X2 might be the type of damage expected from
uniaxial compression in concrete[ According to Hoenig "0868#\ the only moduli a}ected in this
case are E1\ G01\ and G12[ Therefore\ from eqns "4[29#\ "4[40#\ "4[45# we may conclude that the only
non vanishing elements of D in eqn "4[17# are D2\ D3\ and D4[ Moreover\ eqn "4[18# requires that

D2¦D3 � 9 "4[51#

The hexagonal damage theory is thus reduced for CTI to two independent damage variables\ D2

and D4\ and
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E	−0 �
0
E

K

H

H

H

H

H

H

H

H

H

H

H

H

H

k

0 −n −n 9 9 9

−n
0−"0−n#D2

0−1D2

−
n¦"0−n#D2

0−1D2

9 9 9

−n −
n¦"0−n#D2

0−1D2

0−"0−n#D2

0−1D2

9 9 9

9 9 9
0¦n

0−1D2

9 9

9 9 9 9
0¦n

0−D4

9

9 9 9 9 9
0¦n

0−D4

L

G

G

G

G

G

G

G

G

G

G

G

G

G

l

"4[52#

4[3[ Cubic dama`e

The case of tetragonal damage symmetry with material properties the same in three orthogonal
directions reduces the number of elastic parameters to three[ One _nds

D0000 � D1111 "4[53#

D1122 � D1100 � D0011 "4[54#

and the damage tensor D which now becomes symmetric also has only three independent elements[

4[4[ Isotropic dama`e

For isotropy of the damaged material\ E	 reduces to only two independent elements[ This leads
to

D0101 � 0
1
"D0000−D0011# "4[55#

which leaves only two independent parameters\ henceforth denoted simply by D0 and D1 instead
of the more cumbersome D0000 and D0011\ to describe isotropic damage[ In matrix form\ the isotropic
damage tensor is

D �

K

H

H

H

H

H

H

H

k

D0 D1 D2 9 9 9

D1 D0 D1 9 9 9

D1 D1 D0 9 9 9

9 9 9 "D0−D1# 9 9

9 9 9 9 "D0−D1# 9

9 9 9 9 9 "D0−D1#

L

G

G

G

G

G

G

G

l

"4[56#

or\ in compact form\

Dijkl � D1dijdkl¦
0
1
"D0−D1#"dikdjl¦dildjk# "4[57#
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Even if the damage at a point in a body leaves the material with the highest level of symmetry\
namely isotropy\ two independent scalars\ D0 and D1\ eqn "4[57#\ are needed to characterize that
damage[ The physical meaning of these parameters is not at all obvious from this form of the
damage[ They must be written in terms of the degradation of physically meaningful moduli in
order to permit interpretation and evaluation[

In a damaged material that remains isotropic\ expressions for the damaged moduli can be written
in terms of D0 and D1 using eqns "3[8# and "4[57#

l½ � l 00−D0−
D1

n 1� "0−Dl#l "4[58#

m½ � m"0−D0¦D1# � "0−DS#m "4[69#

In each of these\ the various combinations of D0 and D1 that appear could be identi_ed as scalar
damage parameters denoted by Dl and DS\ but the most useful are those with physical signi_cance
such as the shear damage DS above and DK\ DE\ Dn associated with the bulk modulus\ the Young|s
modulus and Poisson|s ratio which can be obtained by using eqns "4[58# and "4[69# ]

K	 � K"0−D0−1D1# � "0−DK#K "4[60#

E	 � E
"0−D0−1D1#"0−D0¦D1#

"0−D0#−"0¦1n#D1

� "0−DE#E "4[61#

n½ �
"0−D0#n−D1

"0−D0#−"0¦1n#D1

� "0−Dn#n "4[62#

Of special interest are the damage parameters associated with the shear and the bulk moduli\ DS

and DK\ and they are obtained by using eqns "4[69# and "4[60# ]

DS � D0−D1 "4[63#

DK � D0¦1D1 "4[64#

5[ Conclusion

The physical interpretation of the concept of damage in one!dimension is quite straightforward
in terms of area loss and consequent sti}ness degradation "Hult\ 0876 ^ Rabotnov\ 0858#[ The same
cannot be said in extending the concept to three dimensions\ and indeed\ the selection of the
variables to describe internal damage is one of the vexing problems of continuum damage mech!
anics[

The present work has accomplished several key steps[ First\ within the same framework as the
theory for the analysis of composite materials\ it is reasoned that the degraded elastic constants
can be expressed with a linear dependence on the undamaged constants\ something that occurs
automatically in the one dimensional model[ Consequently\ the damage is expressible in its most
general form by a rather intractable eighth!order tensor[ Secondly\ we have shown that the most
general description of damage reduces to a fourth!order tensor if one employs the strain equivalence
principle[ And _nally\ we have shown that the elements of the damage tensor are not all inde!
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pendent ^ moreover\ although the symmetries in material properties and physical damage do not
appear as obviously in the tensor D as they do in the modulus tensor E or E	\ the e}ects of such
symmetries can be expressed in a reduction of the number of independent damage parameters[

We have focused on the case of hexagonal symmetry that may hold particular interest in
applications to concrete and on the isotropic damage[ Especially noteworthy are the results that
two damage parameters are needed to describe isotropic damage[ This contrasts with published
applications that have extended the single damage parameter description uniaxial reponse to three!
dimensional cases[ In Cauvin and Testa "0886# we explore the signi_cance of\ and the limitations
on those two damage parameters[

There remains also the quantitative evaluation of damage parameters from actual tests[ This is
an endeavour that has been greatly facilitated by the present work by means of the physically
meaningful damage parameters that are given in terms of the basic elements of D[
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